vont de 2,53 à $2,94 \AA$. Leur longueur moyenne ($2,68 \AA$) ne diffère pas de façon significative de la longueur moyenne de leurs homologues dans $\mathrm{Ag}_{4} \mathrm{P}_{2} \mathrm{~S}_{6}$ monoclinique ($2,63 \AA$), dans $\mathrm{Ag}_{2} \mathrm{P}_{2} \mathrm{~S}_{6}$ (Toffoli, Khodadad \& Rodier, $1978 b$) ($2,66 \AA$ A) ou dans $\mathrm{Ag}_{4} \mathrm{P}_{2} \mathrm{~S}_{7}$ (Toffoli, Khodadad \& Rodier, 1977) $(2,64 \AA)$.

Références

Busing, W. R. (1971). Acta Cryst. A27, 683-684.
Carpentier, C. D. (1974). These de Doctorat, Univ. AlbertLudwig, Freiburg im Breisgau, République Fédérale d'Allemagne.
Colombet, P., Leblanc, A., Danot, M. \& Rouxel, J. (1982). J. Solid State Chem. 41, 174-184.
International Tables for X-ray Crystallography (1974). Tome IV. Birmingham: Kynoch Press.

Jandali, M. Z., Eulenberger, G. \& Hahn, H. (1978). Z. Anorg. Allg. Chem. 447, 105-118.
Jandali, M. Z., Eulenberger, G. \& Hahn, H. (1980). Z. Anorg. Allg. Chem. 470, 39-44.
Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Rigoult, J., Tomas, A. \& Guidi-Morosini, C. (1979). Acta Cryst. A35, 587-590.
Toffoli, P. \& Khodadad, P. (1977). C. R. Acad. Sci. Sér. C, 285, 559-561.
Toffoli, P. \& Khodadad, P. (1980). C. R. Acad. Sci. Sér. C, 291, 275-277.
Toffol, P., Khodadad, P. \& Rodier, N. (1977). Acta Cryst. B33, 1492-1494.
Toffoli, P., Khodadad, P. \& Rodier, N. (1978a). Acta Cryst. B34, 1779-1781.
Toffoli, P., Khodadad, P. \& Rodier, N. (1978b). Acta Cryst. B34, 3561-3564.
Toffoli, P., Michelet, A., Khodadad, P. \& Rodier, N. (1982). Acta Cryst. B38, 706-710.

Acta Cryst. (1983). C39, 1488-1490

Crystal Form and Structure of Ammonium Hexaaquamagnesium Trichloride, $\mathbf{N H}_{4}\left[\mathbf{M g}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$

By X. Solans and M. Font-Altaba
Departamento de Cristalografía y Mineralogía, Universidad de Barcelona, Gran Via 585, Barcelona 7, Spain
M. Aguiló
Cristalografía, Facultad de Química, Universidad de Barcelona, P. Imperial Tarraco s/n, Tarragona, Spain
and J. Solans* and V. Domenech
Departamento de Cristalografía y Mineralogía, Universidad de Oviedo, Arias de Velasco s / n, Oviedo, Spain

(Received 28 December 1982; accepted 5 July 1983)

Abstract. $M_{r}=256 \cdot 8$, monoclinic, $C 2 / c, a=9.320$ (3), $b=9.582$ (3), $c=13.327$ (4) $\AA, \beta=90.12(4)^{\circ}, V=$ 1190 (1) $\AA^{3}, \quad D_{x}=1.43 \mathrm{Mg} \mathrm{m}^{-3}, \quad Z=4, \quad \lambda($ Mo $K \alpha)=$ $0.71069 \AA, \mu($ Mo $K \alpha)=0.812 \mathrm{~mm}^{-1}, \quad F(000)=536$, room temperature. The structure was solved by direct methods and refined by full-matrix least squares to an R of 0.075 for all observed reflections. The Mg^{2+} and NH_{4}^{+}ions display an octahedral coordination of water molecules and Cl^{-}ions, respectively, while the Cl^{-}ions are coordinated to six water molecules and two NH_{4}^{+} ions. In general, the crystal shows the faces $\{001\}$ and $\{110\}$. A qualitative and quantitative morphological analysis has been carried out. The main periodic bond-chain (PBC) directions are [001], $\frac{1}{2}\langle 110\rangle,[100]$, [010], $\frac{1}{2}\langle 112\rangle$ and $\frac{1}{2}\langle\overline{1} 12\rangle$. The main F faces are $\{001\}$, $\{110\},\{112\},\{\overline{1} 12\}$ from minor to major attachment energy.

[^0]0108-2701/83/111488-03\$01.50

Introduction. The crystallization of the β-phase of ammonium pentaborate tetrahydrate by slow evaporation at room temperature (Domenech, 1981) is linked to the presence in the solution of $\mathrm{NH}_{4} \mathrm{MgCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. A structural and morphological study of the title compound has been carried out in order to obtain crystallographic data to determine the possible influence of this compound on the obtention of different phases of ammonium pentaborate tetrahydrate.

Experimental. Colourless hygroscopic crystals were obtained by fractional crystallization and slow evaporation from a solution of $\mathrm{NH}_{3}, \mathrm{H}_{3} \mathrm{BO}_{3}$ and $\mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in water. In the first crystallization crystals of the β-phase of ammonium pentaborate tetrahydrate were separated. In the second, crystals of the title compound were obtained.

Equidimensional crystals, $0.2 \times 0.2 \times 0.2 \mathrm{~mm}$, Philips PW 1100 diffractometer, Mo $K \alpha$, graphite © 1983 International Union of Crystallography
monochromator, lattice parameters from 20 reflections $\left(4 \leq \theta \leq 12^{\circ}\right)$. Comparison between $I(h k l)$ and $I(\bar{h} k l)$ confirmed the crystal system. ω-scan technique, scan width 1°, scan speed $0.3^{\circ} \mathrm{s}^{-1}$. Three standard reflections measured every 2 h : no variation of intensity. 939 independent reflections, $\theta \leq 25^{\circ}$, range of $h k l:-11,11$; 0,$11 ; 0,15$, respectively, 914 with $I \geq 2 \cdot 5 \sigma(I)$, Lp correction, absorption ignored. Cl and Mg atoms from MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980), remaining non-hydrogen atoms from DIRDIF (Beurskens, Bosman, Doesburg, Gould, van den Hark \& Prick, 1980). Anisotropic full matrix (SHELX, Sheldrick, 1976), H (from $\Delta \rho$ synthesis) with overall isotropic temperature factor, final $\quad R=0.075, \quad R_{w}=0.078, \quad w| | F_{o}\left|-\left|F_{c}\right|\right|^{2}$ minimized, $w=\left[\sigma^{2}\left(F_{o}\right)+0.0433\left|F_{o}\right|^{2}\right]^{-1} ; f, f^{\prime}$ and $f^{\prime \prime}$ from International Tables for X-ray Crystallography (1974), ratio of maximum l.s. shift to error 3.4 in z coordinate of $\mathrm{H}(\mathrm{O} 2)$, maximum and minimum heights in final $\Delta \rho$ map 0.4 and $-0.3 \mathrm{e} \AA^{-3}$, respectively: VAX-750.

The dihedral angle between the crystal faces was measured by optical goniometry. In general, the crystals are equidimensional, and show faces $\{001\}$ and $\{110\}$; faces $\{\overline{1} 12\}$ were observed in one crystal (among 54). 20% of crystals are penetration twins; these were studied by automatic diffractometry. The twin law is a twofold axis parallel to the [001] axis. The symmetry of twin crystals is $P 112_{1}$, with the same cell parameters, and their crystal structure shows a disorder in the locations of the water molecules.

Discussion. Final atomic parameters are given in Table 1.*

The structure consists of discrete $\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{2+}, \mathrm{Cl}$ and NH_{4}^{+}ions linked by ionic forces and hydrogen-bond interactions. Each Mg atom is surrounded by six water molecules in an octahedral arrangement. The average $\mathrm{Mg}-\mathrm{O}$ bond lengths and $\mathrm{O}-\mathrm{Mg}-\mathrm{O}$ angles are 2.053 (3) \AA and $89.7(1)^{\circ}$, respectively. Each NH_{4}^{+}ion is surrounded by six Cl^{-}ions in an octahedral arrangement with an average $\mathrm{Cl}-\mathrm{N}$ distance of 3.34 (4) \AA. Finally, each Cl^{-}ion is hydrogen bonded to six water molecules and two NH_{4}^{+}ions (cf. Table 2).

A crystallization unit involving the atoms shown in Fig. 1 was defined in order to determine the PBC's. One-eighth of each N atom and one-quarter of each Cl^{-}ion is assumed, in order to obtain stoichiometry and non-polarity conditions (Hartman, 1973; Woensdregt, 1980). The main PBC's are listed in Table 3.

[^1]Figs. 2 and 3 show projections of the structure down the main PBC directions.
In the [001] zone (Fig. 2) there are two [001] PBC's per unit cell. The bonding between these PBC's leads to the (110), (100) and (010) slices, in which the [001] are connected by the $\frac{1}{2}(a+b), a$ or b translation. In the $\frac{1}{2}[110]$ zone (Fig. 3) there are two non-translationequivalent $\frac{1}{2}[110]$ PBC's per unit cell. The bonding between them leads to (001) and (112) slices, in which the $\frac{1}{2}[110]$ are connected by a c glide plane or an n glide plane.

Table 1. Final atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic thermal parameters (\AA^{2})

	$B_{\text {eq }}=\frac{8}{3} \pi^{2} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} . \mathbf{a}_{j}$.			
	x	y	z	$B_{\text {eq }}$
Cl (1)	5000	0	5000	3.5 (1)
$\mathrm{Cl}(2)$	2544 (1)	7384 (2)	7467 (1)	$3 \cdot 3$ (1)
Mg	5000	5000	5000	1.9 (1)
N	5000	13 (6)	7500	5.1(4)
$\mathrm{O}(1)$	4103 (3)	6876 (2)	5381 (2)	$3 \cdot 3$ (1)
$\mathrm{O}(2)$	3194 (3)	3990 (2)	5511 (2)	3.4 (1)
$\mathrm{O}(3)$	4084 (3)	5134 (3)	3601 (2)	$3 \cdot 3$ (1)

Table 2. Interatomic distances (\AA) and angles (${ }^{\circ}$)

$\mathrm{Mg}-\mathrm{O}(1)$	2.047 (2)	$\mathrm{Cl}\left(2^{1}\right) \cdots \mathrm{O}(1)$	$3 \cdot 177$ (3)
$\mathrm{Mg}-\mathrm{O}(2)$	2.059 (2)	$\mathrm{Cl}\left(2^{\text {vi }}\right) \cdots \mathrm{O}(2)$	$3 \cdot 180$ (3)
$\mathrm{Mg}-\mathrm{O}(3)$	2.053 (2)	$\mathrm{Cl}\left(2^{\text {vii }}\right) \ldots \mathrm{O}$ (3)	$3 \cdot 186$ (3)
$\mathrm{Cl}\left(1^{1}\right) \cdots \mathrm{N}$	3.332 (2)	$\mathrm{Cl}\left(2^{\text {viii }}\right) \cdots \mathrm{O}$ (3)	$3 \cdot 159$ (3)
$\mathrm{Cl}\left(2^{\text {ii) }}\right.$) $\ldots \mathrm{N}$	3.404 (3)	$\mathrm{O}(1)-\mathrm{Mg}-\mathrm{O}(2)$	89.8 (1)
$\mathrm{Cl}\left(2^{\text {iii) }}\right) \ldots \mathrm{N}$	3.284 (3)	$\mathrm{O}(1)-\mathrm{Mg}-\mathrm{O}(3)$	$90 \cdot 1$ (1)
$\mathrm{Cl}\left(1^{\text {iv }}\right) \cdots \mathrm{O}(1)$	$3 \cdot 149$ (2)	$\mathrm{O}(2)-\mathrm{Mg}-\mathrm{O}(3)$	89.5 (1)
$\mathrm{Cl}\left(1^{v}\right) \cdots \mathrm{O}(2)$	$3 \cdot 202$ (2)		
Symmetry code			
(i) x, y, z		(v) $x-\frac{1}{2} y+\frac{1}{2}, z$	
(ii) $x, y-1, z$		(vi) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{3}{2}$	
(iii) $x+\frac{1}{2}, y-\frac{1}{2}, z$		(vii) $x, 1-y, z-\frac{1}{2}$	
(iv) $x, y+1, z$		(viii) $\frac{1}{2}-x, \frac{3}{2}-y, 1$	

Table 3. Main PBC's with interaction ionic energies between crystallization units in $\mathrm{kJ} \mathrm{mol}^{-1}$ and slice $\left(E_{\mathrm{s})}\right)$, attachment (E_{att}) and crystallization (E_{cr}) energies in $\mathrm{kJ} \mathrm{mol}^{-1}$ for the F faces

(a) Main PBC's					
\|001	(1,000)	\underline{a}	$(4,010)$	$\underline{a}(1,001)$	
$\frac{1}{2}\|110\|(1,000)$	\underline{a}	$(3,000)$			
$\frac{1}{2}\|110\|(1,000)$	\underline{a}	$(3,100)$		$E_{a}=-247$	
[100\| (1,000)	\underline{b}	$(1,100)$		$E_{0}=-83.8$	
[010] (1,000)	\underline{b}	$(1,010)$			
\|201	(1,000)	\underline{b}	$(4,110)$	$\underline{b}(1,201)$	
1021\| (1,000)	\underline{b}	$(4,020)$	$\underline{b}(1,021)$		
[101] (1,000)	\underline{a}	$(4,010)$	$\underline{b}(1,101)$		
1011\| (1,000)	\underline{a}	$(4,010)$	$\underline{b}(1,011)$		

(b) Main \digamma slices				
	$E_{\text {sl }}$	$E_{\text {att }}$	$E_{\text {att }}^{*}$	$E_{\text {cr }}$
001	-1326	-613.7	-648.0	-1274 (21)
110	-1319	-613.7	-681.9	-1273 (21)
112	-1002	-770.2	-872.8	-1271 (21)
100	-692.4	-928.0	-1064	-1274 (21)
010	-690.3	-928.9	- 1065	-1274 (21)
* Includes contribution of hydrogen bond.				

Fig. 1. View of the crystallization unit. ($q, n m p$) indicates the symmetry code; values for q : (1) $x+n, y+m, z+p$; (2) $\frac{1}{2}+x+n$, $\frac{1}{2}-y+m, \frac{1}{2}+z+p ;(3) \frac{1}{2}+x+n, \frac{1}{2}+y+m, z+p$; (4) $x+n,-y+m, \frac{1}{2}+z+p$; (5) $-x+n,-y+m,-z+p$; (6) $\frac{1}{2} x+n, \frac{1}{2}+y+m, \frac{1}{2}-z+p$; (7) $\frac{1}{2}-x+n$, $\frac{1}{2}-y+m,-z+p ;(8)-x+n, y+m, \frac{1}{2}-z+p$.

Fig. 2. Projection down the [001] PBC direction.

Fig. 3. Projection down the $[110] \mathrm{PBC}$ direction; $\delta=$ $[1 \overline{1} 0] \wedge\left[110 \mid ; \delta^{\prime}=[110] \wedge[001]\right.$.

Slice, attachment and crystallization energies defined by Hartman (1973) were computed assuming Coulomb interactions only. The crystallization unit was considered as pre-formed and $+2,-1$ and +1 charges were assigned to the positions of Mg, Cl and N atoms, respectively. The computer program used was MORFE (Solans, 1982), The slice, attachment and crystallization energies are listed in Table 3. The e.s.d.'s of the crystallization energies were calculated from the e.s.d.'s of the atomic coordinates, in order to determine the influence of the error of the structure determination in the final values. According to these results, $\{001\}$ and $\{110\}$ faces have equal attachment energies. This is due to the assumed distribution of charges, which produces a pseudocubic cell with $a=6.675$ (5) A.

In order to determine the influence of water molecules, the energies of $\mathrm{OH} \cdots \mathrm{Cl}$ contacts were considered as ion-dipole interactions. The average value of this energy is $-17.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The attachment energy has been corrected according to this value. The results are also listed in Table 3. The application of the Hartman-Perdok theory explains the crystal forms of the title compound. The relationship between the attachment energy of faces $\{110\}$ and $\{001\}$ is very close to the approximate ratios between the surfaces (from 0.7 to 0.9), which were computed from the lengths of the edges.

This work was sponsored by the University of Barcelona.

References

Beurskens, P. T., Bosman, W. P., Doesburg, H. M., Gould, R. O., van den Hark, T. E. M. \& Prick, P. A. J. (1980). Tech. Rep. 1980/1. Crystallography Laboratory, Toernooiveld, Nijmegen, The Netherlands.
Domenech, V. (1981). Morphological and Structural Study on Ammonium and Potassium Borates. Dr. Thesis, Univ. of Oviedo, Spain.
Hartman, P. (1973). Crystal Growth; An introduction, edited by P. Hartman, ch. 14. Amsterdam: North-Holland.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J. P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Sheldrick, G. M. (1976). SHELX. A computer program for crystal structure determination. Univ. of Cambridge, England.
SOLANS, X. (1982). MORFE. A computer program for attachment- and slice-energy calculations. Univ. of Barcelona, Spain.
Woensdregt, C. F. (1980). Private communication.

[^0]: * Present address: Departamento de Cristalografia y Mineralogia, Universidad de Barcelona, Barcelona, Spain.

[^1]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 38706 (7 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

